A general moment expansion method for stochastic kinetic models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general moment expansion method for stochastic kinetic models.

Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic prop...

متن کامل

Moment closure approximations for stochastic kinetic models with rational rate laws.

Stochastic models are often used when modelling chemical species that have low numbers of molecules. However, as these models become large, it can become computationally expensive to simulate even a single realisation of the system since even efficient simulation techniques have a high computational cost. One possible technique to approximate the stochastic system is moment closure. The moment ...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

Moment Equations and Hermite Expansion for Nonlinear Stochastic Differential Equations with Application to Stock Price Models

Exact moment equations for nonlinear Itô processes are derived. Taylor expansion of the drift and diffusion coefficients around the first conditional moment gives a hierarchy of coupled moment equations which can be closed by truncation or a Gaussian assumption. The state transition density is expanded into a Hermite orthogonal series with leading Gaussian term and the Fourier coefficients are ...

متن کامل

Identifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions

This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2013

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.4802475